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Weber’s law can be explained either by a compressive scaling of
sensory response with stimulus magnitude or by a proportional
scaling of response variability. These two mechanisms can be dis-
tinguished by asking how quantities are added or subtracted. We
trained Rhesus monkeys to associate 26 distinct symbols with 0–25
drops of reward, and then tested how they combine, or add, sym-
bolically represented reward magnitude. We found that they could
combine symbolically represented magnitudes, and they trans-
ferred this ability to a novel symbol set, indicating that they were
performing a calculation, not just memorizing the value of each
combination. The way they combined pairs of symbols indicated
neither a linear nor a compressed scale, but rather a dynamically
shifting, relative scaling.
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Animals and humans can estimate the number of various
items, and the precision of this approximate number sense

decreases with magnitude. For example, although it is easy to
recognize the difference between 2 and 4 items, it is more dif-
ficult to distinguish 22 from 24 items. This dependence of ac-
curacy on magnitude is a property that the approximate number
sense shares with more basic sensory processes. Weber (1) ob-
served that in general, across many sensory modalities, the just
noticeable difference between two stimuli is proportional to their
magnitude. Fechner (2) proposed that Weber’s observation
could be explained if sensations were physiologically encoded as
a logarithmic function of stimulus magnitude, but Stevens (3)
argued instead that sensations obey a power law, with perceptual
magnitude being proportional to a power function of the
stimulus magnitude, with the power usually less than 1. Both
a logarithmic and a power-less-than-one relationship between
stimulus and internal coding are compressive, with the same
physical difference between stimuli producing incrementally
smaller internal differences between successively larger pairs of
external stimuli. Any kind of compressive scaling would explain
a decrease in discriminability with increasing magnitude if the
noise in the internal representation is constant.
However, an alternative possibility is that variability in encoding

might increase with stimulus magnitude. In fact, the variability in
the firing rates of cortical neurons tends to increase with firing rate
(4–6). Therefore, to the extent that a stimulus parameter is
encoded by the rate of neural firing, an increase in perceptual
variability with stimulus magnitude may not require compressive
scaling; it is also consistent with a linear neuronal representation
with magnitude-dependent variability (7–10).
Neurons that are tuned to numerosity have been recorded in

monkey posterior parietal and lateral prefrontal cortex (11–13).
The width and asymmetry of such tuning is consistent with a
compressed scaling (14). However, neurons tuned to particular
numerosities, or numerosity ranges, represent a labeled-line
code and therefore are not, themselves, scaled to numerosity, in
the sense that either Fechner, or Stevens, meant when they
proposed a logarithmic, or power, scale for the sensory response
to a graded physical stimulus. What is explicit in Fechner’s
model, and implicit in models of tuned units, is a stage where

sensory response increases with stimulus magnitude. Indeed, neu-
rons whose firing rate depends monotonically on the number of
items in an array have been reported in macaque lateral intra-
parietal area (LIP) (15), but the results do not distinguish between
a linear or a logarithmic coding.
Stevens asserted that the only behavioral test that can distin-

guish linear from logarithmic sensory coding is how sensory
magnitudes are added or subtracted (16). Specifically, he pointed
out that addition and subtraction can be performed accurately
only on linear representations, whereas a compressive repre-
sentation allows only multiplication and division. If magnitudes
are combined at a stage of labeled line coding, as proposed by
Dehaene (17), the way magnitudes are combined would not
necessarily reflect scaling. However, if magnitudes are combined
at a stage where they actually are coded according to a linear or
logarithmic scale, then the scale can be distinguished by exam-
ining how magnitudes are added or subtracted. If the underlying
scale is logarithmic, or otherwise compressed, the combination
of two magnitudes should be superadditive (expansive). For ex-
ample, in a compressed scale, the internal representation of “3”
will be more than half the internal representation of “6,” so
combining two 3s should correspond to more than 6.
Studies in which rats, mice, or pigeons must estimate the time

remaining (10, 18) or the number of pecks remaining (9) find
that these animals show linear subtraction behavior, consistent
with a linear internal scale. However, the concern has been
raised that these animals simply learned the correct response for
every possible condition (17). Here we ask how monkeys com-
bine pairs of symbols or pairs of dot arrays representing a large
range of quantities, from 0 to 25, a range large enough that
memorization of all possible pairwise combinations should be
prohibitively difficult. Cantlon and Brannon (19) previously
showed that monkeys can sum sequentially presented dot arrays,
and one chimpanzee has demonstrated the ability to sum Arabic
numerals up to a total of 4 (20), but the nature of the internal
representation was not explored in either of these studies.
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behavior indicates an underlying relative scaling of magnitude.
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Results and Discussion
To determine how monkeys sum quantities, we taught symbol-
literate monkeys (21) an addition task using dots and two distinct
symbol sets presented on a touchscreen in their home cage. Three
young adult male macaque monkeys had been trained extensively,
as juveniles, using a pairwise choice task to associate 26 distinct
symbols or up to 25 dots in an array with reward values of 0–25
drops of liquid (Fig. 1, Upper). In symbol set 1 Arabic numerals
0–9 represented 0–9 drops, and the letters X Y W C H U T F K
L N R M E A J represented 10–25 drops. Symbol set 2, which
was learned after the monkeys had mastered addition using
symbol set 1, was made by filling 4–5 squares in a 3 × 3 square
array: 0–25 drops were represented by the symbols:

. The first
three plots in Fig. 1 (Lower) show the monkeys’ choice behavior
in each pairwise comparison task. Although the monkeys were
rewarded appropriately no matter which side they chose, after
training, in all three pairwise comparison tasks, they almost in-
variably chose the larger option; they were highly accurate at
discriminating the stimuli in the pairwise task, especially with
symbol set 1, with which they had had several years of experience
(21, 22), and were less accurate for symbol set 2, with which they
had had less experience.
To investigate how the monkeys combined values, we gave

them an addition task, first using dots, then the well-learned
symbol set 1. For the dots addition task, the monkeys were
presented with two vertically separated dot arrays each inside
a circle on one side of the screen, comprising the “sum,” and
a single dot array on the other side of the screen, the “singleton.”
Whichever side of the screen he touched, the monkey was rewar-
ded with the number of drops of liquid corresponding to the value
(sum or singleton) on that side. Although we made it as clear as
possible, using discrete drops accompanied by discrete beeps, that
each symbol represented a distinct number of drops, we cannot
assume that the monkeys interpreted these symbols as representing
numerosity, rather than quantity or hedonic value.
The last three plots in Fig. 1 (Lower) show the fraction of

times the monkeys chose the sum for each singleton–sum com-
bination for the different tasks. The choice data show that the
monkeys usually picked the larger of the two, sum or singleton,
except when the sum and the singleton were close in value, when

their behavior approached chance. Fig. 2A shows that the aver-
age percent-correct (larger) choices averaged over all three
monkeys were well above chance (50%) for each day of the dots
addition task and the two symbol addition tasks.
Our question is not, however, whether the monkeys can per-

form above chance on a difficult addition task, but how the
monkeys combine quantities. To answer this, we first calculated
the singleton-equivalent value of each sum magnitude (averaged
over all addend combinations) by fitting a logistic function to the
choice ratios using maximum likelihood, as shown in Fig. 2D for
the data from the last month of symbol set 1 addition. The point
of subjective equality between each sum and all singletons with
which it was paired was taken as the singleton-equivalent value
of each sum. Fig. 2E plots the singleton-equivalent values for
each sum magnitude for the last 30 d of the dots addition task
(black), the first 10 d (red) and the last 30 d (blue) of symbol set
1 addition, and the first 10 d of symbol set 2 addition (green).
After learning the dots addition task the monkeys valued two sets
of dots presented together as equivalent to the numerical sum of
the two (Fig. 2E, black). When first presented with the symbol
set 1 addition task the monkeys on average undervalued the sum
of two symbols, compared with the singleton (Fig. 2E, red). In-
deed, their behavior is roughly equivalent to the choice ratio if
they just chose the largest value symbol on the screen, ignoring
the smaller value symbol entirely (dotted black line).
We then calculated the contribution of the larger and the

smaller addends to the subjective value of the sum separately
(Fig. 2 F and G). In the dots addition task, both addends con-
tributed significantly to the value of the sum (P < 10−10), al-
though the contribution of the smaller addend was less than that
of the larger addend (larger addend weight = 1.03; smaller ad-
dend weight = 0.64). Thus, the monkeys combined the magnitudes
of the two dot arrays on the sum side, but undervalued the smaller
addends relative to the larger ones. Although this shows that they
combined the two addend dot arrays to arrive at an approximately
correct sum, we cannot tell whether they first evaluated the
magnitude of each addend array and then added them or whether
they simply evaluated how many dots in total were on the sum
side. On the other hand, they cannot evaluate the sum magnitude
directly for the symbols.

Fig. 1. Tasks. (Upper) A monkey performing each of the six tasks. Dots comparison task: The monkey has chosen 11 dots rather than 4 dots and is receiving 11
drops of reward through a stainless steel tube. Symbol set 1 comparison task: The monkey is about to touch the symbol 8 rather than 4. Symbol set 2
comparison task: The monkey is touching the symbol (worth 21 drops) rather than the symbol (worth 3 drops). Dots addition task: The monkey is
choosing 8 dots rather than 6 plus 1 dots. Addition with symbol set 1: The monkey has chosen 3 plus 6 instead of 9 (the two choices give equivalent rewards).
Addition with symbol set 2: The monkey is about to touch plus (worth 9 +1 3 = 22 drops) rather than (worth 19 drops). (Lower) Average choice matrices
for each task over a 2-mo period; number of trials indicated above each plot. For the comparison tasks the plot shows the average choice ratio for every
possible choice pair. The horizontal and vertical position of each square in the matrix indicates the two choices that were presented, and the color of each
square in the matrix indicates the percentage of trials when the monkey chose the vertical option over the horizontal. The choice matrices for the three
addition tasks show the average behavior of the same three monkeys over the last 1-mo period on each task for every possible sum and singleton combi-
nation. The vertical position of each square represents the value of the singleton option and the horizontal position represents the sum value; the color of
each square indicates the percentage of trials when the monkey chose the sum over the singleton.
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For the first 10 d of symbol set 1 addition (Fig. 2G, red), the
singleton-equivalent value of the smaller addend was close to
zero. The logistic regression model yielded a small-addend weight
of 0.10, which was smaller than the large addend weight (0.89)
(Fig. 2F) but still significantly different from zero (P = 0.003),
indicating that when the monkeys were first presented with the
addition task, they mostly chose the largest element on the screen,
and valued the smaller addend at only 1/10th of its actual value.
This is not surprising, because they had been extensively trained
on a paired comparison task with the same symbols, in which the
optimal strategy was to choose the larger of the two presented
options. After 4 mo of training on the symbol set 1 addition task,
however, their valuation of the sum of two symbols (Fig. 2E, blue)
increased, although not quite to the full value of the sum of the
two symbol magnitudes.
Thus, the monkeys learned that two symbols on one side of the

screen together represent a larger reward than the previously
learned value of either symbol alone. They could be performing
a calculation; i.e., evaluating the sum as a combination of both
addend values, or they could be performing a simpler operation,
like valuing two symbols together as “somewhat larger” than the
value of the larger symbol alone, or they could have learned the
value of each 2-symbol combination (351 position-specific com-
binations). To decide if, and, if so, how the monkeys were
combining the two addends, we calculated the singleton-equiv-
alent value of the smaller and larger addends separately (Fig. 2 F
and G, blue circles). Their valuation of the smaller addend in-
creased after 4 mo of training, such that for the fifth month of
symbol set 1 addition the logistic regression model gave the
weight of 0.34 (1.01) for the smaller (larger) addend, both of
which were significantly larger than zero.

This increase in valuation of the smaller addends supports our
conclusion that after 4 mo of daily exposure to symbol set 1
addition, the monkeys learned that the value represented on the
sum side was larger than the value represented by either of the
two addend symbols alone. Their behavior at the end of the 5-mo
period could no longer be explained by a choose-the-largest-
symbol strategy (because both the larger and the smaller addend
contributed significantly to the behavioral value of the sum), or
by any strategy based only on the value of the larger addend,
such as simply incrementing it by a fixed amount (because their
valuation of the sum depended significantly on the magnitudes of
both addends). Furthermore, as with the dots addition task, al-
though their performance approximated addition, the monkeys
systematically undervalued the smaller of the two addends. Note
that symbols 1–12 can be either the larger or the smaller addend,
and that the subjective value of these symbols differed strikingly,
by a factor of 3, depending on whether they were presented as
the larger or the smaller of the two addends (compare Fig. 2 F
and G).
It is still possible that the monkeys’ final improved perfor-

mance on symbol set 1 addition was achieved by learning the
value of every possible addend–addend combination (351 different
position-specific combinations), choosing on the basis of mem-
orized value, rather than performing a calculation. To distinguish
between memorization, however unlikely, and calculation, we
asked whether the monkeys would perform addition with a sec-
ond symbol set, reasoning that if they performed addition on
a second symbol set without extensive training, then they could
not be relying on memorized values of each addend–addend
combination, but rather had learned to combine the two
addends—a calculation. The monkeys learned symbol set 2 using
the original two-symbol comparison task for 3 1/2 mo, by the end

Fig. 2. Behavioral results. (A) Percent-correct (larger) choices each day for each task averaged over all three monkeys. (B) Percent-correct (larger) choices each
day for each task for each monkey (indicated by different line types) for all mandatory calculation combinations (when the sum is larger but neither addend is
larger than the singleton). (C) Percent-correct (larger) choices ± SEM for the first six trials of each addend combination for the two symbol addition tasks for
each monkey for all mandatory calculation combinations. (D) Fit of a logistic function to the fraction of singleton choices as a function of singleton mag-
nitude, for each sum value for symbol set 1 addition task, last 30 d; the 50% choice point is taken as the singleton-equivalent value of the sum. (E) Singleton-
equivalent value (calculated as in D) of each sum magnitude for each task. Dotted black line indicates predicted singleton-equivalent sum value if the
monkeys simply chose the largest item on the screen. (F) Singleton-equivalent value of only the larger of the two addends for each task. (G) Singleton-
equivalent value of only the smaller of the two addends for each task. (H) Singleton-equivalent value of each addend calculated separately for every other
addend magnitude with which it was paired, for symbol set 1 addition task, last month of data.
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of which they chose the larger symbol 87% of the time, over all
possible symbol pair combinations (Fig. 1). The monkeys then
alternated for 1 mo between symbol set 1 addition and the two-
symbol comparison task with symbol set 2. Finally, they were
presented with the addition task using symbol set 2.
From the first day of testing with symbol set 2 addition, the

monkeys chose the larger side more often than they did during
the early days of symbol set 1 addition (Fig. 2A), and their
performance reached a stable asymptote within 10 d, rather than
the 50 d it took to reach asymptote for symbol set 1 addition.
Their final accuracy in the symbol set 2 addition task was lower
than that for symbol set 1 addition, presumably because they had
had much less experience (in the comparison task) with this
symbol set. Nevertheless, the small addend valuation plot during
the first 10 d on symbol set 2 addition (Fig. 2G, green) shows that
the monkeys valued the smaller addends at 20% of their actual
value. Similarly, the smaller addend weight estimated from the
logistic regression model during the first 10 d of symbol set 2
addition was 0.2, and was significantly larger than zero (P <
10−18). This indicates that the monkeys transferred the addition
task to a novel symbol set, even though they experienced each of
the 351 possible position-dependent addend combinations on
average less than twice per day.
As a further test of whether the monkeys transferred the

ability to combine symbols, we define “mandatory calculation” as
those trials in which the sum is bigger than the singleton, but the
singleton is larger than both addends (i.e., “choose the largest”
strategy always gives the incorrect answer). The daily percent-
correct (larger) choices for mandatory calculation trials for the
first 10 d of symbol set 2 addition were significantly higher than the
first 10 d with symbol set 1 addition (χ2-test, P < 10−14); this was
true for each monkey individually (Fig. 2B) whether calculated for
the first 10 d (χ2-test, P < 10−7) or the first 200 or 500 mandatory
trials (χ2-test, P < 10−7). To still further ascertain whether this
behavior represents true transfer, we looked at their behavior as
a function of trial number for each of the possible 132 different
addend–addend combinations for all mandatory calculation con-
ditions for the two symbol sets. Fig. 2C confirms the transfer of
addition behavior, in that the average percent correct over all
possible addend–addend combinations was larger for symbol set 2
than for symbol set 1 for the first through the sixth time each
addend–addend combination was presented for each monkey
individually.
We conclude from the results so far that the monkeys learned to

combine pairs of symbols in such a way that the combination was
valued at more than the magnitude of either individual addend,
but less than the numerical sum of the two symbols. Because the
monkeys transferred the task to a novel symbol set, we conclude
that they did not simply memorize the value of every possible pair
of symbols, but rather performed some kind of calculation. Be-
cause both the large and the small addends contributed signifi-
cantly to the singleton-equivalent value of the sum, we conclude
that the calculation was not simply “choose the largest,” or “value
the larger addend at some fixed increment or fraction of its
magnitude,” but rather to combine the two addends. Therefore,
we sought to characterize the nature of internal representation
used for the calculation by using a maximum likelihood method
to find for various models of how the monkeys might represent
the sum values the Bayesian information criterion (BIC). For
this purpose, the data from the last 30 d of symbol set 1 addition
were used because that is the data set where the monkeys were
most clearly performing addition.
In the linear model, the sum of the two addends was compared

with the value of the singleton. In the logarithmic model, which is
based on Fechner’s original proposal (2) that sensory magnitudes
are represented internally by the log of the stimulus magnitude,
the internal representation of each addend or singleton magni-
tude is given by the log of the magnitude +1 (to avoid taking the
log of 0). The square root model is another proposed com-
pressed scale that can account for Weber’s law (14, 16). In this
model, the internal representation is simply the square root of

the stimulus magnitude. We also tested a max model, in which
the monkeys simply choose the largest option on the screen. For
all these models, the only free parameter in the model is the
slope of the probit psychometric function fit to the choice prob-
ability for each addend–addend–singleton combination (Experi-
mental Procedures). To test whether the best-fitting scale is indeed
compressive, we compared the two compressed scales (log and
square root) to both a linear model and a power model. For the
power model, a best-fitting value for the exponent that is less
(greater) than 1 indicates that the internal representation is com-
pressive (expansive). Accordingly, the free parameters of the power
model were the exponent and the slope of the probit function.
The predicted internal representation for each addend or

singleton magnitude is shown in Fig. 3A for each of these
models. The internal representation functions of both the log
model and the square root model are compressive (concave
downward), with progressively smaller increments between the
internal representations for progressively larger magnitudes, and
of course the internal representation function for the linear
model is neither compressive nor expansive. The average in-
ternal representation function for the max model is expansive
(concave upward), because small addends are more likely to be
the smaller, ignored, of the two addends, and thus are on av-
erage undervalued compared with large addends. Of these
simple models, the power model had the lowest BIC; the expo-
nent for the best-fitting power model was 1.24, indicating that
the underlying scale must be expansive, not compressive, which is
not consistent with Fechner’s hypothesis that a compressive in-
ternal representation underlies the Weber law behavior of de-
creasing discriminability with increasing magnitude.
Fig. 3B shows the predicted sum value (average point of

subjective equality between each sum value and all possible
singleton values) for each of the simple models in Fig. 3A, as-
suming that internal representations are combined additively.
Combining linear internal representations (Fig. 3A, black dots)
yields an additive combination (Fig. 3B, black dots.). Combining
logarithmic internal representations (Fig. 3A, green dots) yields
an expansive (superadditive) combination (Fig. 3B, green dots).
Therefore, given that by inspection the shape of the monkeys’
sum value behavior (Fig. 2E) is overall linear (for dots), or

Fig. 3. Modeling monkey addition behavior. (A) Internal representation of
addend magnitude for five different models fit to the data for symbol set 1
addition. (B) Predicted subjective sum value (singleton equivalent) for each
model. (C) Internal representation of addend magnitude for the normali-
zation model calculated using the parameter k obtained from the fit to
different data sets as indicated. (D) Predicted sum value for the normaliza-
tion model calculated using the same parameter k. (E) Predicted addend
values for each addend magnitude, calculated independently for each other
addend with which the addend could be paired, as indicated, using the
parameter k obtained from the fit to the symbol set 1 last 30-d data set.
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slightly concave downward (for symbol set 1 addition), we con-
clude that the underlying internal representation of dots must be
approximately linear, and for symbols must be slightly expansive,
not compressive, consistent with the best-fitting exponent for the
power model being greater than 1. One could argue that by re-
warding the sum as the linear addition of the two addends, we
taught the monkeys to do linear addition, rather than teaching
them that the combination of two symbols should be super-
additive. Because their initial behavior on the symbol addition
task, their persistent behavior over time on the symbol addi-
tion task, and their initial behavior on a second symbol set
addition task all showed subadditive valuation of the sum, we
are inclined to think that superadditive combining would not
be expected even if it were rewarded as such.
Although the monkeys’ valuation of the sums was a function of

both addends, they clearly did not perform accurate addition,
because they systematically undervalued the smaller addends.
This cannot be explained simply by always undervaluing the
symbols representing small rewards, because the same symbol
could show a subjective value close to its actual value when it was
the larger of the two addends, but a subjective value that was
a fraction of its actual value when it was the smaller of the two
addends. That is, the monkeys’ subjective valuation of each
symbol was context dependent, as has been previously described
for value coding in midbrain dopamine neurons (23), orbito-
frontal cortex neurons (24, 25), LIP neurons (26), and for monkey
behavioral value choices (27). This suggests a relative valuation, or
normalization. Fig. 2H shows the singleton-equivalent value of
each symbol set 1 addend (last 30 d) separately for every other
addend it could be combined with to give a sum ≤ 25; this plot
shows that the monkeys’ valuation of each addend is systematically
reduced by the increasing magnitude of the other addend. This
means the monkeys are basing their valuation of each symbol on
its relative value compared with the other symbol simultaneously
presented on the same side, not its absolute value.
To model a representation in which the value of an addend

depends on the magnitude of the other addend, we used nor-
malization, for which biologically plausible mechanisms have
been proposed (28). We first fit the symbol set 1 addition data
(last 30 d) with a full normalization model in which the internal
representation of each quantity is weighted by a hyperbolic
function of the p norm of the remaining two quantities (Experi-
mental Procedures). The value of the power in the best-fitting
model was large (>1011), suggesting that the normalization was
effectively accomplished by a maximum. Therefore, we used
a simpler model in which each quantity was weighted by a hy-
perbolic function of the maximum of the other two quantities.
The most parsimonious model was obtained when the weight for
the singleton was set a priori to 1, resulting in a value of BIC =
35,916, which is smaller than any of the models without nor-
malization (Fig. 3B). Fig. 3C shows the calculated internal rep-
resentation for each addend using the parameter k obtained by
fitting this model to each data set as indicated, and Fig. 3D shows
the calculated sum value. Fig. 3E shows that the predicted ad-
dend values are reduced by increasing the other addend in
a manner similar to the monkey behavior (compare Fig. 2H).
Reference-dependent discriminability is a long-established

principle in psychophysics (1), economics (29), and neural coding
(30, 31) that could be explained by compressive scaling (loga-
rithmic or power-less-than-one). A century of psychophysics has
amassed evidence for a compressive relationship between many
kinds of sensory stimuli and perceived sensation, but neuro-
physiology has shown that although neuronal signaling might be
compressed relative to stimulus magnitude, in general the com-
pression of neuronal responsiveness is a dynamic process, in-
volving mechanisms like adaptation, lateral inhibition, and gain
control (5, 32). A normalization process could account for the
apparent compressed scaling observed in many behavioral
studies, as well as the ability to discriminate proportionately over
a range of magnitudes (25, 28). In this study, we used addition
behavior to ask whether the relative sensitivity, the scaling of just

noticeable difference with magnitude, of symbolically represented
reward is better explained by a logarithmic, or other compressive
internal scale, compared with scalar variability. Instead we found
a dynamically shifting, relative scaling. Our result brings the
coding of symbolically represented magnitude into agreement
with direct measurements of neuronal coding of value.

Experimental Procedures
Touch-Screen Task. The three monkeys were housed in one quad cage with
a computer-driven touch screen (Elo TouchSystems) mounted in one quad-
rant. Software for stimulus presentation, reward delivery, data collection,
and data analysis was written in MATLAB (MathWorks). Each monkey spent
2–4 h per day alone, with food, in the training cage, 7 d per week. They were
allowed to work to satiety each day, usually performing >500 trials per day.
During training/testing the monkey was presented with two options on the
two sides of the touch screen; the monkey touched the screen and was
rewarded with a number of liquid drops corresponding to the magnitude
represented on whichever side of the screen he touched. The liquid was
delivered via a stainless steel tube mounted in front of the screen. To make
the numerosity of each symbol-associated reward as clear as possible, the
liquid was dispensed in discrete drops at 4 Hz by the opening of a computer-
driven solenoid, and each drop was accompanied by a beep.
Dots comparison task. Two sets of dots were presented on either side of the
screen; each set of dots was enclosed in a 9-cm-diameter circle. The dots were
placed at random positions within the circle, and they were of random size
and color. When two dots overlapped, the smaller dot always occluded the
larger, not vice versa, and the two were constrained to be different colors.
Symbol comparison task. We used two distinct symbol sets of 26 symbols each,
5 cm in height, each set representing 0–25 drops. In symbol set 1 Arabic numerals
0–9 represented 0–9 drops, and the letters X Y W C H U T F K L N R M E A J
represented 10–25 drops. Symbol set 2 was generated by filling 4–5 squares
in a 3 × 3 square array: 0–25 drops were represented by the symbols

.
For a given symbol set, two symbols were presented simultaneously on ei-
ther side of the touch screen, and the monkey was rewarded with the
number of drops corresponding to the symbol value on whichever side of
the screen the monkey first touched. Except for the symbols representing
zero, the monkey would be rewarded no matter which side he touched, but
the monkeys much more often chose the larger of the two options.

Addition Task. Two values between 0 and 25 were chosen by a random
number generator; the side that would represent the singleton was chosen
randomly, and for the other side, two addends were chosen randomly from
all possible combinations that could represent the sum.
Dots addition task. The monkeys were presented with one set of dots on one
side of the screen (the singleton) and two sets of dots on the other side (the
sum, made up of two “addends”).
Symbol addition task. The monkeys were presented with two symbols on one
side of the screen (the sum side) and one symbol on the other side (the
singleton). In the symbol addition task, the two addend symbols on the sum
sidewere always contained within a single oval, to encourage themonkeys to
recognize the two-symbol combination as a single choice option. The
monkeys first learned the dots comparison task, then symbol set 1 comparison
task, then dots addition, then symbol set 1 addition, followed by symbol set 2
comparison, and lastly symbol set 2 addition.

Analysis of Behavioral Data. Although the monkeys were rewarded no matter
which side of the screen they touched (except for value zero), they usually
chose the larger side; we therefore will refer to larger choices as “correct.”
We also calculated percent correct for the situations we defined as “man-
datory calculation” conditions, for those conditions when the sum was larger
than the singleton, but neither addend was larger than the singleton.

To find the subjective value (singleton-equivalent value) of each addend–
addend sum (averaged over all addend combinations) we fit a logistic psy-
chometric function (with a lapse rate, gamma) to the choice ratios; the
parameters (slope, mu, and gamma) were estimated using maximum likeli-
hood, as shown in Fig. 2D. The point of subjective equality between each
sum and all singletons with which it was paired was taken as the singleton-
equivalent value of each sum.

To quantify the contribution of the small and large addends to the sum
value, for each addend magnitude individually, we fit a logistic function to the
difference between the singleton and the other addendmagnitude.We also fit
the following logistic regression model to the probability of choosing the
singleton, p(single). Logit p(single) = a0 + a1 Xsingle + a2 Xsmall + a3 Xlarge, where
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Xsingle, Xsmall, and Xlarge denote the magnitude of the singleton, smaller ad-
dend, and larger addend, respectively, and a0–a3 the corresponding regression
coefficients. From this model, the relative contribution of small and large
addend in the unit of singleton (referred to as small and large addend
weights) can be estimated as −a2/a1 and −a3/a1, respectively.

Modeling Choice Behavior. To identify the nature of the internal represen-
tation most consistent with the observed addition behaviors, we calculated
the BIC for a probit psychometric function combined with several possible
functions. Representing the singleton, small addend, large addend as Xsingle,
Xsmall, and Xlarge, respectively, and the internal representations of singleton
and sum as Ysingle and Ysum, respectively, we first considered the following
five simple models for the monkeys’ internal representation of presented
addend and singleton magnitudes:
Log model:

Ysingle = ln
�
Xsingle + 1

�
  vs:  Ysum = lnðXsmall + 1Þ+ ln

�
Xlarge + 1

�
,

Square root model:

Ysingle =X1=2
single  vs:  Ysum =X1=2

small +X1=2
large,

Linear model:

Ysingle =Xsingle  vs:  Ysum = Xsmall +Xlarge,

Power model:

Ysingle =Xα
single  vs:  Ysum =Xα

small +Xα
large,

Max model:

Ysingle =Xsingle  vs:  Ysum =max
�
Xsmall,Xlarge

�
:

For each of these models, the probability of choosing the singleton was given
by the normal cumulative distribution function, i.e., p(singleton) = normcdf
{β(Ysingle−Ysum)}. All model parameters were estimated using the fminsearch
function in MATLAB (MathWorks Inc.).

We also tested several different normalization models in which the internal
representation of each quantity was normalized by a function of the two other
quantities. We used the p norm to investigate systematically how this nor-
malization process was influenced by the two other quantities. In other words,

Ysingle = kS·Xsingle, & Ysum ≡Ysmall +Ylarge =k1 ·Xsmall + k2·Xlarge,

where ksingle, k1, and k2 are given by the hyperbolic function of the p norm

of the other two magnitudes, namely, kS = 1=
�
1+ k

�
Xz
small +Xz

large

�1=z�
, k1 =

1=
�
1+ k

�
Xz
single +Xz

large

�1=z�
, k2 = 1=

�
1+ k

�
Xz
single +Xz

small

�1=z�
: Therefore, the

free parameters of this full normalization model were k and z in addition to
the slope parameter β in the probit function. The BIC for this model was
35,971, but it gave a large value of z (>1011), indicating that the p norm
effectively performed a max operation. We therefore fit a simpler model in
which normalization is accomplished by the maximum of the remaining
magnitude, to the same data. Namely,

kS = 1
��

1+ k·max
�
Xsingle, Xlarge

��
, k1 = 1

��
1+ k·max

�
Xsingle, Xlarge

��
, 

k2 = 1
��

1+ k·max
�
Xsingle, Xsmall

��
:

The best fit for this model gave a BIC = 35,961, a better fit, with one
fewer parameter.

We found an even better fit using a simpler model in which only the
addends are normalized by each other’s magnitude, namely, by setting kS = 1
(i.e., Ysingle = Xsingle). This model gave a BIC = 35,916.
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